Bandwidth Selection for Weighted Kernel Density Estimation
نویسندگان
چکیده
Abstract: In the this paper, the authors propose to estimate the density of a targeted population with a weighted kernel density estimator (wKDE) based on a weighted sample. Bandwidth selection for wKDE is discussed. Three mean integrated squared error based bandwidth estimators are introduced and their performance is illustrated via Monte Carlo simulation. The least-squares cross-validation method and the adaptive weight kernel density estimator are also studied. The authors also consider the boundary problem for interval bounded data and apply the new method to a real data set subject to informative censoring.
منابع مشابه
Bootstrap Bandwidth and Kernel Order Selection for Density Weighted Averages
Abstract: Density weighted average is a nonparametric quantity expressed by expectation of a function of random variables with density weight. It is associated with parametric components of some semiparametric models, and we are concerned with an estimator of this quantity. Asymptotic properties of semiparametric estimators have been studied in econometrics since the end of 1980’s and it is now...
متن کاملWhat Do Kernel Density Estimators Optimize?
Some linkages between kernel and penalty methods of density estimation are explored. It is recalled that classical Gaussian kernel density estimation can be viewed as the solution of the heat equation with initial condition given by data. We then observe that there is a direct relationship between the kernel method and a particular penalty method of density estimation. For this penalty method, ...
متن کاملSemiparametric Localized Bandwidth Selection in Kernel Density Estimation
Since conventional cross–validation bandwidth selection methods do not work for the case where the data considered are serially dependent, alternative bandwidth selection methods are needed. In recent years, Bayesian based global bandwidth selection methods have been proposed. Our experience shows that the use of a global bandwidth is however less suitable than using a localized bandwidth in ke...
متن کاملA Comparative Study of Bandwidth Choice in Kernel Density Estimation for Naive Bayesian Classification
Kernel density estimation (KDE) is an important method in nonparametric learning. While KDE has been studied extensively in the context of accuracy of density estimation, it has not been studied extensively in the context of classification. This paper studies nine bandwidth selection schemes for kernel density estimation in Naive Bayesian classification context, using 52 machine learning benchm...
متن کاملSemiparametric Localized Bandwidth Selection For Kernel Density Estimation
Since conventional cross–validation bandwidth selection methods don’t work for the case where the data considered are dependent time series, alternative bandwidth selection methods are needed. In recent years, Bayesian based global bandwidth selection methods have been proposed. Our experience shows that the use of a global bandwidth is however less suitable than using a localized bandwidth in ...
متن کامل